Evidence for the involvement of a specific cell wall layer in regulation of deep supercooling of xylem parenchyma.

نویسندگان

  • M Wisniewski
  • G Davis
چکیده

Current theory indicates that the structure of the cell wall is integral to the ability of a tissue to exhibit deep supercooling. Our previous work has indicated that the structure of the pit membrane and/or amorphous layer (protective layer), rather than the entire cell wall, may play a major role in deep supercooling (21, 22). The present study indicates a shift in the low-temperature-exotherm of current year shoots of peach can be induced by soaking twigs in water over 3 to 10 days. Alternatively, these shifts can be inhibited by exposing tissues to 10(-4) molar cycloheximide. Ultrastructural observations indicated a marked alteration of the amorphous layer in xylem parenchyma of water-soaked tissue. Alterations consisted of an apparent loosening or partial dissolution of portions of the amorphous layer. Changes in the density or uniformity of the amorphous layer in cycloheximide-treated tissues were not as readily apparent. The appearance of the protoplast in tissue soaked in water for up to 10 days was characteristic of deacclimated cells. However, in tissue soaked in cycloheximide for the same period these changes were not evident. These observations further support our contention that the structure of the amorphous layer may play a key role in establishing and regulating the ability of a cell to exhibit deep supercooling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of intracellular contents to facilitate supercooling capability in beech (Fagus crenata) xylem parenchyma cells.

In order to find the possible role of intracellular contents in facilitating the supercooling capability of xylem parenchyma cells, changes in the temperature of supercooling levels were compared before and after the release of intracellular substances from beech xylem parenchyma cells by DTA. Various methods were employed to release intracellular substances from xylem parenchyma cells and all ...

متن کامل

Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.

Boreal hardwood species, including Japanese white birch (Betula platyphylla Sukat. var. japonica Hara), Japanese chestnut (Castanea crenata Sieb. et Zucc.), katsura tree (Cercidiphyllum japonicum Sieb. et Zucc.), Siebold's beech (Fagus crenata Blume), mulberry (Morus bombycis Koidz.), and Japanese rowan (Sorbus commixta Hedl.), had xylem parenchyma cells (XPCs) that adapt to subfreezing tempera...

متن کامل

Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation.

It has been accepted that xylem ray parenchyma cells (XRPCs) in hardwood species respond to subfreezing temperatures either by deep supercooling or by extracellular freezing. Present study by cryo-scanning electron microscopy examined the freezing responses of XRPCs in five boreal hardwoods: Salix sachalinensis Fr. Schmit, Populus sieboldii Miq., Betula platyphylla Sukat. var japonica Hara, Bet...

متن کامل

Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees.

Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of ...

متن کامل

Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi).

Xylem parenchyma cells (XPCs) in larch adapt to subfreezing temperatures by deep supercooling, while cortical parenchyma cells (CPCs) undergo extracellular freezing. The temperature limits of supercooling in XPCs changed seasonally from -30 degrees C during summer to -60 degrees C during winter as measured by freezing resistance. Artificial deacclimation of larch twigs collected in winter reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 91 1  شماره 

صفحات  -

تاریخ انتشار 1989